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Abstract. We consider a task of predicting normal and pathological
phenotypes from macroscale human brain networks. These networks (con-
nectomes) represent aggregated neural pathways between brain regions.
We point to properties of connectomes that make them different from
graphs arising in other application areas of network science. We discuss
how machine learning can be organized on brain networks and focus on
kernel classification methods. We describe different kernels on brain net-
works, including those that use information about similarity in spectral
distributions of brain graphs and distances between optimal partitions of
connectomes. We compare performance of the reviewed kernels in tasks
of classifying autism spectrum disorder versus typical development and
carriers versus non-carriers of an allele associated with an increased risk
of Alzheimer’s disease.
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1 Introduction

Recently, network representation of human brains (called connectomes) has gained
increasing attention in neuroscience research. One of the challenges posed by con-
nectomics is classification of normal and pathological phenotypes based on brain
networks [1]. Mathematically, this is a problem of classifying small undirected
connected graphs with uniquely labeled nodes.

We start this paper with a brief overview of pitfalls common to all machine
learning studies on neuroimaging data. We describe how brain networks can be
constructed based on magnetic resonance images (MRI) and discuss why these
networks differ from graphs arising in other application areas of network science,
such as chemistry or molecular biology. We next focus on a kernel approach to
classification of brain networks. We adopt kernels previously described in other
contexts and also review kernels proposed in our previous studies specifically for
brain networks. We compare performance of these kernels based on two real-life
datasets of structural connectomes.
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2 Machine learning application to neuroimaging data

Machine learning based on neuroimaging data is becoming increasingly popular;
until recently, group-level statistical comparisons dominated the field. A paper [2]
discusses this fundamental shift in paradigm and also highlights some pitfalls of
neuroimaging-based machine learning studies. For example, these include normal
anatomical inter-individual variability which can mask disease-related changes,
or normal inter-individual variation in cognitive reserve which adds a lot of
uncertainty to the reference standards that are based on clinical diagnoses. Also,
important part of variability in neuroimaging data stems from patient selection,
inter-scanner variability and data preprocessing.

A caveat of neuroimaging-based machine learning studies is also a dysbalance
between a dimensionality of the feature space and the number of subjects, and
hence the problem of data reduction and a high risk of overfitting. A review [3]
gives a good idea of the sample sizes typical for machine learning studies in the
field of neuroscience. The authors [3] summarize 118 studies that used machine
learning algorithms to predict psychiatric diagnoses based on neuroimaging data.
Sample sizes in a majority of those studies did not exceed 100 participants, and
most of the studies were based on less than 50 participants.

Finally, a most recent comprehensive review of neuroimaging-based single
subject prediction of brain disorders can be found in [4]. Based on the anal-
ysis of more than 200 papers, the authors discuss several biases common for
neuroimaging-based machine learning studies, such as a feature selection bias
and an issue of hyperparameter optimization. Again, the authors [4] emphasize
that the main bottleneck of this field is the limited sample size.

Importantly, the majority of studies in the area deal with voxel-level and
region-level features. The former include features that are extracted at the level
of individual voxels, such as voxel brightness or fractional anisotropy computed
based on diffusion tensor imaging (DTI). Region-based features (e.g., region
volumes or region average thicknesses) are derived by parceling brain images
into zones, for example on the basis of a standardized brain atlas.

However, there exists an alternative way of representing human brains that
makes full usage of network science concepts and ideas. We discuss this approach
(called connectomics) in the next section.

3 Network representation of a human brain

A term connectome was proposed by [5] and [6]. It stands for a network that
represents brain regions and their interconnections. For very simple organisms,
such as Caenorhabditis elegans, these connections can be modeled at the level of
individual neurons. For human brains, connectomes represent aggregated neural
pathways at the macroscopic scale. For a review of this rapidly evolving research
area, we refer to [1].

To produce human structural connectomes, brain gray matter is identified
on MRI scans using a segmentation algorithm and is next parceled into regions
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according to a brain atlas. These regions are the nodes of the constructed net-
work. White matter streamlines are detected using a tractography algorithm.
The number of streamlines that connect each pair of brain regions produces a
weight for an edge between the respective nodes.

The above pipeline produces DTI-based structural connectomes. It is also
possible to define so-called functional connectomes based on the fMRI scans. In
this case, strength of co-activation of each pair of the regions provides weights
for the edges. For a review on network modeling methods on fMRI data, we refer
to [7]; we do not discuss this approach here.

Since the structural connectome is a discrete mathematical model of a human
brain, the algorithms of discretization chosen in a given study largely affect the
size and the structure of the resulting brain networks (e.g., see [8] for a discussion
on methodological pitfalls of connectome construction). First, there is no unique
way to define a set of nodes for brain graphs; we refer to [9] for a discussion on
how the choice of nodal scale and gray-matter parcellation scheme affects the
structure and topological properties of whole-brain structural networks.

Second, network edges can be defined differently depending on a tractography
algorithm used to reconstruct white matter streamlines; for example, a paper [10]
examines how outcomes of machine learning on connectomes change depending
on tractography algorithms underlying edge reconstruction.

Regardless of a particular algorithm used to produce network edges, raw edge
weights in the resulting structural connectomes are proportional to the number
of detected streamlines. A researcher next makes a choice on whether to work
with unweighted or weighted networks. The former approach implies that all raw
weights are binarized. Given an undirected weighted graph with n nodes, let A
be the n× n adjacency matrix with entries aij , where aij is the weight between
the respective nodes. Unweighted graph is produced by:

abinarizedij = 1ifaij > 0, 0 else. (1)

Sometimes a threshold is set to a non-zero value to eliminate low weights.
Alternatively, a threshold can be set different across participants, while the spar-
sity of the resulting networks is fixed across all brains (e.g., the authors of [12]
compute graph metrics for the unweighted networks within a range of sparsity
levels and next average the obtained values).

When a study analyses weighted brain networks, normalization of connectiv-
ity matrices is recommended [13], [14]. This is because raw number of streamlines
is known to vary from individual to individual and can be affected by fiber tract
length, volume of cortical regions and other factors. Normalization itself can
involve geometric properties such as volumes of the cortical regions or physical
path lengths between the regions (e.g., [13], [14]), or be purely based on topo-
logical properties of the networks (e.g., [15], [16]). A paper [17] examines how
topological and geometric normalizations of brain networks affect the predictive
quality of machine learning algorithms run on these networks. The results of [17]
suggest that a combination of both topological and geometric normalizations is
the most informative.



4 Anvar Kurmukov, Yulia Dodonova, Leonid Zhukov

To sum up, there is certainly some ambiguity in how structural connectomes
should be constructed from DTI scans. However, regardless of the particular
aspects of the network reconstruction pipeline, the resulting brain graphs share
some important properties. These are usually small undirected connected net-
works. The vertices are labelled according to brain regions, and a set of uniquely
labeled vertices is the same across different connectomes constructed with the
same atlas. The networks are spatially embedded: vertices are localized in 3D
space, and edges have physical lengths. In what follows, we discuss how machine
learning algorithms can be applied to these objects.

4 Machine learning on brain networks

Hence, a problem of classifying scans of normal and pathological brains trans-
forms into a problem of classifying the respective brain networks. Mathemat-
ically, this is a task of pattern recognition on graphs; however, it differs from
a more usual understanding of machine learning on graphs. More commonly, a
graph itself becomes an object defining a metric between the vertices, and ma-
chine learning algorithms are run on vertices or neighborhoods (e.g., algorithms
aiming at link prediction in social networks). Connectomics poses a different
challenge: small brain graphs are now examples of classes to be distinguished by
an algorithm. In this section, we provide a formal problem statement and discuss
how it can be tackled.

4.1 Problem statement

Let Gi be a brain network, yi be a class label, yi ∈ {0, 1} throughout this study.
Given a training set of pairs (Gi, yi) and the test set of input objects Gj , the
task is to make a best possible prediction of the unknown class label yj . In what
follows, we use G to denote a brain graph, either unweighted or weighted, and
A to denote the respective adjacency matrix which includes values from {0, 1}
if the graph is unweighted or holds edge weights if the graph is weighted. We
consider the classification problem for both unweighted and weighted networks,
and make special remarks on the work of the algorithms in these two cases when
needed.

In some sense, this problem is similar to the problem of classifying molecules
that arises in chemistry and molecular biology. A paper [18] describes some
benchmark datasets from that subject area and the respective tasks, for exam-
ple a task of assigning protein molecules to a class of enzymes or non-enzymes,
predicting whether or not a given molecule exerts a mutagenic effect, or whether
or not a given chemical compound is cancerogenic. Each molecule or compound
is modeled as a graph, with the nodes representing atoms and the edges repre-
senting bonds between the atoms; each node is labeled with its atom type.

Similarly to brain networks, molecules are small connected graphs which
should be assigned a class label. The major difference between the two problems
is that each node in brain networks has a unique label, and hence the problem
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of graph isomorphism does not arise in connectomics. This means that machine
learning algorithms shown to be useful in other subject areas are to be modified
to be valid for classifying brain networks; in Section 5, we show how this can be
accommodated. Besides, an important prerequisite of classifying brain networks
is that all brain graphs have the same number of nodes and the same set of node
labels; in Section 5.5, we show how this very specific property of brain networks
can be used to develop machine learning algorithms on brain graphs.

4.2 A kernel approach

The most obvious approach to machine learning within these settings would be to
adopt some strategy of graph embedding and transform adjacency matrices into
vectors from Rp because most classifiers work with this type of input objects.
One could vectorize a matrix by taking the values of its upper triangle (the
so-called ”bag of edges”) or compute some local or global graph metrics and
use them as feature vectors. For an excellent example of a study within this
framework, we refer to [16]. The authors work with the ”bag of edges” and also
compute edge betweenness centralities, network efficiency, clustering coefficients
and some other topological metrics and classify different sex and kinship groups
based on these features.

In this paper, we focus on a different approach that defines kernels on struc-
tured data directly and hence allows for classifying brain networks without em-
bedding brain graphs into a real vector space. This is possible due to an impor-
tant property of the SVM classifier to accept any input objects, not necessarily
vectors from Rp [19], [20]. This means that any positive semi-definite function
K(xi,xj) : X2 → R on the input data X can be used as a kernel for the SVM
classifier provided that:

n∑
i=1

n∑
j=1

K(xi,xj)cicj ≥ 0

for any (x1, x2, . . . , xn) ∈ X and any coefficients (c1, c2, . . . , cn) ∈ R. There are
no constraints on the structure of the input data X.

In the next sections, we review several kernels that can be useful for clas-
sifying brain networks and compare their performance based on two real-life
datasets.

5 Kernels on brain networks

Below we review some kernels that can be useful for a task of classifying brain
networks. Recall that we only deal with structural connectomes which represent
anatomical connections between brain regions. It is also possible to define func-
tional connectomes, for which the elements of weighted adjacency matrices are
the correlations between time series the respective brain regions activation; as
such, certain specific kernel methods can be developed for this particular type
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of input data (e.g., those that account for the geometry of the manifold of the
positive definite correlation matrices [21]). In this sense, structural connectomes
are more problematic as they do not lie in a specific space with known proper-
ties. In what follows, we only discuss kernel methods applicable for the analysis
of structural connectomes.

We discuss two approaches to producing graph kernels. The first approach
defines a kernel function that generates a positive semi-definite Gram matrix.
A second approach introduces a function quantifying a distance between graphs
and next obtains a kernel by exponentiating this distance.

5.1 Random walk kernel

We first consider a walk kernel described in [19], which computes the number of
walks common for each pair of graphs. Since all brain graphs have the same set
of uniquely labeled nodes Γ , we modify the walk kernel as described below.

The walk kernel is now computed on a graph G∗ which is a minimum of G
G′. The graph G∗ has the same set of nodes Γ∗ = Γ and an adjacency matrix
A∗:

A∗ = a∗ij = {min(aij , a
′
ij) : aij ∈ A, a′ij ∈ A′}. (2)

Note that the equation (2) produces a correct minimum graph regardless of
whether the adjacency matrix A is unweighted or holds the edge weights.

We compute the walk kernel on G and G′ by:

Kwalk(G,G′) =

|Γ∗|∑
i,j=1

[

∞∑
k=0

µkA
k
∗]ij . (3)

We set µk = µk. Hence, the (3) becomes:

Kwalk(G,G′) =

|Γ∗|∑
i,j=1

[

∞∑
k=0

µkAk∗]ij =

|V∗|∑
i,j=1

[(I − µA∗)−1]ij (4)

To ensure convergence, µ must be lower than the inverse maximal eigenvalue. In
this paper, we report results for µ set to 0.95 times the inverse maximal eigen-
value of A∗; lower values of µ tried in preliminary studies result in slightly worse
classification quality. Conceptually, the factor µ downweights longer walks and
makes short walks dominate the graph similarity score. A paper [18] discusses
this effect.

In addition to sensitivity to the length of walks taken into account, walk
kernel suffers from the so-called tottering effect [22]. Since walks allow for repe-
titions of nodes and edges, the same fragment is counted repeatedly in a graph
similarity measure. In undirected graphs, a random walk may start tottering
on a cycle or even between the same two nodes in the product graph, leading
to an artificially high graph similarity score even when the structural similarity
between two graphs is minor.
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5.2 Kernel on shortest path lengths

Second, we consider a kernel on shortest path lengths. Kernels on shortest path
lengths are proposed in [18] as an alternative to random walk kernel that over-
comes its shortcomings discussed above. The authors [18] define a kernel on
graphs that compares paths instead of walks. In this study, we only use one
version of a kernel based on paths, with some preliminary modification aiming
to account for unique node labels of brain networks.

For a graph G with a set of uniquely labeled nodes Γ a matrix of shortest
path lengths is given by:

Υij = υ(γi, γj), (5)

where γi and γj are the nodes of the graph G and υ(γi, γj) is the length of the
shortest path between these nodes (weighted or unweighted, depending on the
nature of graph G).

We next define a path kernel by:

Kpath(Υ, Υ ′) =
∑
υij∈Υ
υ′ij∈Υ

′

K1(υij , υ
′
ij), (6)

where K1(υij , υ
′
ij) is a kernel on pairs of paths from G and G′. For the later, we

use a polynomial kernel K1(x,x′) given by:

Kpoly(x,x′) = (〈x,x′〉+ c)p, p = 2. (7)

For a general definition of path kernels and proof of their positive definiteness,
we refer to [18].

5.3 Distance-based kernels: L1 and L2 norms

The above methods produce Gram matrices on graphs straightforwardly. An
alternative approach is to introduce a distance between graphs and produce a
kernel based on this distance measure.

Let G and G′ be the networks and ω(G,G′) be a distance between these
networks. We build a graph kernel K using the distance ω as follows:

K(G,G′) = e−αω(G,G
′) (8)

Positive semi-definiteness of this kernel is guaranteed when ω is a metric.
A paper [11] discusses kernels which are not necessarily positive semi-definite,
namely those for which triangle inequality does not hold for a distance measure
ω in (8). The authors claim that these kernels can always be made positive
definite by an appropriate choice of the parameter α; however, forcing a kernel
to be positive definite reduces its expressiveness and diminishes classification
accuracy. In this study, we vary the parameter α for all distance-based kernels,
including those using true metric ω.
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We first define distances between networks via the L1 and L2 norms between
the respective adjacency matrices. For two networks G and G′ with n× n adja-
cency matrices A = {aij} and A′ = {a′ij} (either unweighted or weighted) an L1

distance is given by:

ωL1
(G,G′) =

n∑
i=1

n∑
j=1

|aij − a′ij | (9)

An L2 (Frobenius) norm is defined by:

ωL2
(G,G′) =

√√√√ n∑
i=1

n∑
j=1

(aij − a′ij)2 (10)

We next produce kernels (8) based on these distance measures. This is the sim-
plest possible way to define a distance between the adjacency matrices. In the
next sections, we discuss more sophisticated procedures aiming to quantify pair-
wise distances between networks.

5.4 Kernels on distances between spectral distributions

Studies [23] and [24] proposed to measure similarity between brain networks
based on distances between spectral distributions of the respective graphs. An
idea behind spectral-based kernels is that graph eigenvalue distributions capture
important information about network structure and hence might be useful for a
task of classifying networks.

To construct spectral-based kernels, we use spectra of the normalized graph
Laplacians. Let D be a diagonal matrix of weighted node degrees:

di =
∑
j

aij . (11)

The graph Laplacian matrix is given by:

L = D −A, (12)

The normalized graph Laplacian is given by:

L = D−1/2LD−1/2 (13)

Normalized Laplacians are correctly defined by (13) regardless of whether the
graphs are unweighted or weighted, provided that for weighted graph the matrix
A holds edge weights. The eigenvalues of the normalized Laplacians are always
in range from 0 to 2. We refer to [25] for theory on the normalized Laplacian
spectra and to [26] for examples of the eigenvalue distributions of the normalized
Laplacians in structural brain networks of the cat, macaque and Caenorhabditis
elegans.
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A paper [23] defines distances between brain networks via the information-
theory based measures of difference between spectral distributions. A motivation
behind this approach is that we are most interested in comparing shapes of
the distributions of eigenvalues rather than the vectors of eigenvalues per se.
This is because multiplicity of particular eigenvalues and specific peaks in their
distributions capture important information about graph structure [25].

To quantify distance between distributions, we use the Kullback-Leibler (KL)
divergence and the Jensen-Shannon (JS) divergence. For two probability distri-
butions with densities p(x) and q(x) the KL divergence is:

KL(p||q) =

∫ ∞
−∞

p(x)log
p(x)

q(x)
dx (14)

The Kullback-Leibler kernel [27] is obtained by exponentiating the symmetric
KL divergence:

KKL(p, q) = e−α(KL(p||q)+KL(q||p)) (15)

The JS divergence [28] is:

JS(p||q) =
1

2
(KL(p||r) +KL(q||r)), (16)

where r(x) = 1
2 (p(x) + q(x)).

We compute Jensen-Shannon kernel by:

KJS(p, q) = e−α
√
JS(p||q) (17)

The KL and JS kernels work with the probability density functions restored
from the samples. In [23], we split the entire range of eigenvalues into equal
intervals (bins) and computed frequencies within each bin as a proxy for the
underlying probabilities. However, the results of the entire classification pipeline
were highly sensitive to the choice of the number of bins used to reconstruct
density. In this study, we overcome this shortcoming by applying kernel density
reconstruction prior to computation the KL and JS divergences. We use the
Gaussian kernel and produce the values:

f(x) =
∑
sj

1√
2πσ2

exp(−|x− sj |
2

2σ2
), (18)

where sj is the j-th eigenvalue of L. To compute this, we use the statmodels
[43] function for univariate kernel density estimation, which is a fast Fourier
transform-based implementation that has an advantage of automatic selection
of optimal bandwidth according to the Silverman’s rule. We next compute the
kernels (15) and (17) based on these values.

There also exists a different approach that compares spectral distributions
directly based on the vectors of eigenvalues [24]. For this purpose, it uses an
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earth mover’s distance (EMD) [29], which measures the minimum cost of trans-
forming one sample distribution into another. Provided that each distribution
is represented by some amount of dirt, EMD is the minimum cost of moving
the dirt of one distribution to produce the other. The cost is the amount of dirt
moved times the distance by which it is moved.

Let {si1, ..., sin} be the eigenvalues of the normalized Laplacian spectrum Si.
We put an equal measure 1/n to each point sik on a real line. Let fkl be the flow

of mass between the points sik and sjl . The EMD is the normalized flow of mass

between sets Si = {si1, ..., sin} and Sj = {sj1, ..., sjn} that minimizes the overall
cost:

emd(Si,Sj) = argmin
F={fkl}

∑
k,l fkl|sik − s

j
l |∑

k,l fkl
, (19)

with the constraints: fkl ≥ 0,
∑n
k=1 fkl = 1/n,

∑n
l=1 fkl = 1/n.

A EMD-based kernel is next computed by (8) using (19) as a measure of
distance between the respective graphs.

5.5 Kernels on distances between network partitions

The last group of graph kernels analyzed in this study quantifies similarity be-
tween brain networks based on whether or not their nodes cluster into similar
communities [30]. Partition-based kernels make the full use of the uniqueness
of node labels in brain networks and the identity of label sets across different
brains. These kernels are based on the idea that brain networks belonging to
a same class produce partitions that are more similar than those obtained for
networks from different classes.

Similarly to [30], this study uses three algorithms to obtain partition of each
brain network: Newman leading eigenvector method [31], Louvian method [32],
and Greedy modularity optimization [33]. All these methods use modularity as
a function to be optimized. Modularity [33] is a property of a network and a
particular division of that network into communities. It measures how good is
the division in the sense that whether there are many edges within communities
and only a few between them. Modularity Q is given by:

Q =
1

2m

∑
ij

[
aij −

didj
2m

]
δ(i, j), (20)

where aij is an element of a graph adjacency matrix, m is a total number of
edges in a given graph, di, dj - degrees of nodes i and j as defined by (11).

Louvain algorithm is a two step iterative procedure. It starts with all nodes
put in separate clusters. Next, for each node i and its neighbors j the algorithm
computes gain in modularity that would take place after removing i from its
cluster and placing it to a cluster of j; after repeating for all neighbors j, i is
placed in the cluster where gain in modularity is maximal. This process repeats
until there is no such node i for which its movement to another cluster produces
gain in modularity. The second step of the algorithm builds a new weighted graph
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wherein nodes are final clusters from the previous step and an edge between two
nodes represents the sum of edges between two corresponding clusters at the
previous step. Once the second step is over, the algorithm reapplies the first
step and iterates.

The Newman leading eigenvector method uses normalized graph Laplacian
given by (12). It starts with all nodes placed in a single cluster; different nodes
next get their labels according to a sign of the respective values of a Laplacian
eigenvector corresponding to the second smallest eigenvalue. The procedure re-
peats for each cluster till convergence. Greedy modularity optimization method
is another division clustering approach which allows for fast detecting commu-
nities in large graphs or sets of many small graphs.

All these partition algorithms are defined for both unweighted and weighted
graphs. We next estimate pairwise similarity of partitions of different brain
networks using the adjusted Rand score (ARI). Let U = {U1, U2, · · ·Ul} and
V = {V1, V2, · · ·Vk} be partitions of two networks GU and GV with the same
sets of node labels, l and k be the number of clusters in the partitions U and V ,
respectively. To define ARI between these partitions, we construct a contingency
table:

U, V V1 V2 . . . Vk sum
U1 ν11 ν12 . . . ν1k a1
U2 ν21 ν22 . . . ν2k a2
...

...
...

. . .
...

...
Ul νl1 νl2 . . . νlk al

sum b1 b2 . . . bk

Here νij denotes a number of objects common between Ui and Vj . ARI is then
given by:

ARI(U, V ) =

∑
i,j

(
νij
2

)
−
[∑

i

(
ai
2

)∑
j

(
bi
2

)]
/
(
ν
2

)
1
2

[∑
i

(
ai
2

)
+
∑
j

(
bi
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bi
2

)]
/
(
ν
2

) . (21)

ARI takes the the value of 1 when the partitions are identical and values close
to 0 in case of random labeling. We thus define a distance ω(GU , GV ) between
networks GU and GV by:

ω(GU , GV ) = 1−ARI(U, V ), (22)

Hence, networks with the same partitions have zero distance, and the maximum
distance is close to 1. We next produce three kernels (8) based on these pairwise
distances, one for each algorithm of clustering brain networks.
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6 Summary: methods

We compare performance of the kernels described in the previous section based
on two tasks of classifying brain networks. In this section, we overview the classi-
fication pipeline and describe a metric used to compare performance of different
kernels; in the next section, we describe the tasks and the datasets.

6.1 Classification pipeline

Figure 1 summarizes our classification pipeline. We deal with brain networks
that represent different phenotypes (i.e., normal and pathological brains). We
compute Gram matrices between these brain networks using the following ker-
nels:

– Random walk (RW) kernel [19]
– Shortest path length (SPL) kernel [18]
– L1-distance kernel
– L2-distance kernel
– Kullback-Leibler (KL) kernel [27]
– Jensen-Shannon (JS) kernel [23]
– Earth mover’s distance (EMD) kernel [24]
– Newman partition (NP) kernel [30]
– Louvain partition (LP) kernel [30]
– Greedy partition (GP) kernel [30]

We next feed these Gram matrices to an SVM classifier, train it on part of
a sample and make prediction for an unseen part of a sample. In computation
of distance-based kernels, we vary the values of α in the range from 0.01 to 10.
The penalty parameter of the SVM classifier varies from 0.1 to 50. We report
the results for models with the optimal values of α and the penalty parameter.

Fig. 1. Classification pipeline
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6.2 Classification quality evaluation

We use the area under the receiver operating characteristic curve (ROC AUC) to
assess the predictive quality of models with different kernels. We run all models
with 10-fold cross-validation and combine predictions on test folds to evaluate
the quality of prediction on the entire sample. For each model, we repeat this
procedure 100 times with different 10-fold splits, thus producing 100 ROC AUC
values.

Note that datasets under consideration are too small to divide them into three
parts (train, validation and test) for parameter estimation. To deal with this, we
find optimal values of the parameters based on 10 different 10-fold splits (with
random states fixed for splitting) and evaluate models with optimal parameter
values based on 100 other 10-fold splits. Importantly, parameter estimation for
the described models is robust to the particular splitting, and it is highly unlikely
that the reported validation procedure biased the results in any noticeable way.

6.3 Data analysis tools

We use Python and IPython notebooks platform[34], specifically NumPy [35],
SciPy [36], pandas [37], matplotlib [38], seaborn [39], networkX [40], community
[41], igraph [42], statsmodels [43], pyemd [44] and scikit-learn [45] libraries. All
scripts are available at https://github.com/kurmukovai/NET2016/.

7 Data

We compare the performance of the kernels described in Section 5 based on
two datasets of precomputed matrices of structural connectomes. We describe
the datasets in this section and also provide some relevant information on the
resulting networks.

7.1 Datasets

UCLA Autism dataset (UCLA Multimodal Connectivity Database [46], [12])
includes DTI-based connectivity matrices of 51 high-functioning autism spec-
trum disorder (ASD) subjects (6 females) and 43 typically developing (TD)
subjects (7 females). Average age (age standard deviation) is 13.0 (2.8) for ASD
group and 13.1 (2.4) for TD group. Nodes of brain networks are defined using
a parcellation scheme by Power et al. [47] which is based on a meta-analysis of
fMRI studies combined with whole-brain functional connectivity mapping. This
approach produces 264 equal-size brain regions and thus 264×264 connectiv-
ity matrices. Network edges are produced based on deterministic tractography
performed using the fiber assignment by continuous tracking (FACT) algorithm
[48]; edge weights are proportional to the number of streamlines detected by
FACT.
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UCLA APOE-4 dataset (UCLA Multimodal Connectivity Database [46],
[49]) includes DTI-based connectivity matrices of carriers and noncarriers of
the APOE-4 allele associated with the higher risk of Alzheimer’s disease. The
sample includes 30 APOE-4 noncarriers, mean age (age standard deviation) is
63.8 (8.3), and 25 APOE-4 carriers, mean age (age standard deviation) is 60.8
(9.7). Each brain is partitioned into 110 regions using the Harvard-Oxford sub-
cortical and cortical probabilistic atlases as implemented in FSL [50]. Therefore,
this dataset includes 110×110 connectivity matrices. Network edges are obtained
using the FACT algorithm [48]. Raw fiber counts in these matrices are adjusted
for the unequal region volumes by scaling each edge by the mean volume of its
two adjacent regions.

The authors of both datasets only report the results of statistical group
comparison based on graph metrics. Hence, there is no publicly available machine
learning baselines for these datasets.

7.2 Edge weights

For each classification task, we evaluate performance of all kernels on both un-
weighted and weighted brain networks. We produce unweighted brain networks
by (1). In this case, each network contains information only on presence or ab-
sence of edges between nodes, and all edges carry equal weights.

To produce weighted brain networks, we take the original edge weights that
represent streamline count between each pair of brain regions and scale them by
the physical distances between the respective regions:

ascaledij =
aij
λij

, (23)

where aij is the original weight of the edge between the nodes i and j, and λij
is the Euclidean distance between centers of the regions i and j. The distances
are computed based on the standard Montreal Neurological Institute (MNI)
coordinates of region centers.

To enhance between-subject comparison, we next normalize the obtained
weights by:

anormedij =
ascaledij∑
i,j a

scaled
ij

. (24)

Note that this latter scaling does not affect the kernels that are based on nor-
malized Laplacian spectra and the partition-based kernels.

We report classification results for both weighted and unweighted connectiv-
ity matrices.

8 Results: kernel comparison

Figure 2 compares performance of the SVM classifier with different kernels in
a task of classification typical development versus autism spectrum disorder.
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Figure 3 provides results for a task of classifying of carriers versus non-carriers
of an allele associated with an increased risk of Alzheimer’s disease.

First, the results show that the classifiers run on weighted brain networks
clearly outperform those run on unweighted brain graphs (the only exception is
an SVM with the Newman-based partition kernel run on the UCLA APOE-4
dataset). This means that edge weights in human macroscale brain networks cap-
ture information important for classifying normal and pathological phenotypes.
This is true regardless of whether we construct a kernel based on similarity of
single edges or shortest paths, or random walks common between brain graphs,
or distances between graph spectral distributions or partitions of brain net-
works. Importantly, edge weights in this study incorporate information on both
strengths of connections (the number of streamlines detected by a tractography
algorithms) and their lengths (approximated by Euclidean distances between the
centers of brain regions).

Second, there is no kernel (or no family of kernels) that provides the best
classification quality on both datasets. Random walk kernel and L1 and L2

distance-based kernels do not perform satisfactorily in both classification tasks.
In a task of classifying autism spectrum disorder versus typical develop-

ment, kernels based on distances between spectral distributions perform the
best. There is virtually no difference in behaviors of the two kernels of this type,
computed with Jensen-Shannon divergence and earth mover’s distance. Spectral
distributions of brain networks seem to capture some information important for
distinguishing this type of pathology from typical development.

For classification of carriers versus non-carriers of an APOE-4 allele, the
most expressive kernels are using comparison of shortest path lengths and the
distances between Louvain-based partitions of brain networks. Interestingly, the
three partition-based kernels differed in their performance, which means that
the analyzed partition algorithms capture different aspects of brain network
structures and thus produce distances between brain networks in a different
manner.

For the two best models on each dataset, we plot the ROC-curves in Figure
4. The curves are averaged over 100 repetitions of the algorithms. Interestingly,
the ROC-curves do not coincide. This means that although the best-working
models are close in terms of classification quality, they capture different aspects
of the data and differ in terms of prediction outcome.

9 Conclusions

In this paper we considered machine learning on macroscale human brain net-
works. These networks (called connectomes) represent connections between brain
regions reconstructed from neuroimaging data. A question is whether connec-
tomes can be useful in discriminating between normal and pathological brain
structures, which can be considered a task of classification on graphs. We point
to properties of brain networks that make a task of classifying connectomes differ
from a task of classifying graph objects from other subject areas.
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Fig. 2. Classification of typical development versus autism spectrum disorder; boxplots
show ROC AUC values over 100 runs of the algorithm with different splits into train
and test samples; abbreviations of the kernels are the same as in Section 6.1: RW -
random walk, SPL - shortest path length, L1 - L1-distance, L2 - L2-distance, KL -
Kullback-Leibler, JS - Jensen-Shannon, EMD - earth mover’s distance, NP - Newman-
based partition, LP - Louvain-based partition, GP - greedy partition.

RW SPL L1 L2 KL JS EMD NP LP GP
Kernel

0.3

0.4

0.5

0.6

0.7

0.8

R
O
C
 A
U
C

binarized
weighted

Fig. 3. Classification of carriers versus non-carriers of an allele associated with an
increased risk of Alzheimer’s disease; boxplots show ROC AUC values over 100 runs
of the algorithm with different splits into train and test samples; abbreviations of the
kernels are the same as in Section 6.1: RW - random walk, SPL - shortest path length,
L1 - L1-distance, L2 - L2-distance, KL - Kullback-Leibler, JS - Jensen-Shannon, EMD
- earth mover’s distance, NP - Newman-based partition, LP - Louvain-based partition,
GP - greedy partition.
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Fig. 4. ROC-curves for the best-performing models in the autism spectrum disorder
(left) and APOE-4 allele carriers (right) classification tasks. Abbreviations of the ker-
nels are the same as in Section 6.1: SPL - shortest path length, JS - Jensen-Shannon,
LP - Louvain-based partition.

We next focus on a kernel classification approach and discuss several kernels
that can be useful for machine learning on connectomes. We show how a random
walk kernel [19] and a kernel based o shortest path lengths [18] can be modified
to account for the uniqueness of node labels in brain graphs. We consider an ap-
proach that produces kernels based on distances between the adjacency matrices
of the respective graphs and use L1 and L2 as the simplest examples of such dis-
tances. We next describe a family of kernels that are based on graph spectral
distributions; of these, two kernels use measures that quantify information di-
vergence between spectral distributions [23], and the remaining kernel is based
on a distance that arises as a solution to a transportation problem. Finally, we
consider a family of partition kernels [30] that quantify similarity between brain
networks based on whether or not their nodes cluster into similar communities;
hence, this latter approach makes the full use of the fact that brain networks
share the same set of unique node labels.

We compared performance of the above kernels in two classification tasks: a
task of classifying typical development versus autism spectrum disorder and a
task of distinguishing carriers and non-carriers of an allele associated with an
increased risk of Alzheimer’s disease. We additionally questioned whether brain
networks with edge weights carrying information on strengths and lengths of the
respective connections are more informative for these classification tasks than
unweighted brain networks which only model the presence of connections.

The answer to this latter question was quite clear: the classifiers run on
weighted brain networks outperformed those run on unweighted brain graphs in
both tasks, regardless of the particular kernel function. Edge weights should not
be ignored in classification of human macroscale brain networks.

The best-performing kernels were task-specific. In a task of classifying autism
spectrum disorder versus typical development, spectral distributions of brain
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networks seem to carry information useful for distinguishing between these two
classes; the two best-performing models quantified distances between networks
based on similarity in their spectral distributions. However, these kernels did not
perform well in classification of carriers and non-carriers of an allele associated
with an increased risk of Alzheimer’s disease. In this latter task, the kernels
based on shortest path lengths and the similarity in partitions of brain networks
were the most expressive.

The kernels analyzed in this study seem to capture different aspects of net-
work structures specific for normal and pathological brains. Future studies may
aim at aggregating information stemming from different kernel models in order
to improve the quality of machine learning on brain networks.
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34. Pérez, F., Granger, B. E. (2007) IPython: A System for Interactive Scientific Com-
puting. Computing in Science & Engineering, 9, 21–29.

35. van der Walt, S., Colbert, S. C., Varoquaux, G. (2011) The NumPy Array: A Struc-
ture for Efficient Numerical Computation. Computing in Science & Engineering, 13,
22–30

36. Jones, E., Oliphant, E., Peterson, P., et al. (2001) SciPy: Open Source Scientific
Tools for Python, http://www.scipy.org/ [Online; accessed 2016-06-03].

37. McKinney, W. (2010) Data Structures for Statistical Computing in Python. Pro-
ceedings of the 9th Python in Science Conference, 51–56.

38. Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In Science En-
gineering 9, 3. 90–95 (2007)

39. Seaborn: v0.5.0. DOI 10.5281/zenodo.12710
40. Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring network structure, dy-

namics, and function using NetworkX. Proc. of the 7th Python in Science Confer-
ence, 11–15 (2008).

41. Available at: http://perso.crans.org/aynaud/communities/api.html
42. Csardi G., Nepusz T. The igraph software package for complex net-

work research. InterJournal, Complex Systems 1695. (2006) Available at:
http://igraph.org/python/

43. Seabold, S., and Perktold, J. Statsmodels: Econometric and statistical modeling
with python. Proc. of the 9th Python in Science Conference. (2010)

44. Available at: https://github.com/garydoranjr/pyemd
45. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É. (2011) Scikit-learn: Ma-
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